FEATURES

225 ps propagation delay through the switch 4.5Ω switch connection between ports
Data rate 1.244 Gbps
2.5 V/3.3 V supply operation

Level translation

3.3 V to 2.5 V

2.5 V to 1.8 V

Small signal bandwidth 610 MHz
6-lead SC70 package

APPLICATIONS

3.3 V to 2.5 V voltage translation

2.5 V to 1.8 V voltage translation

Bus switching
Docking stations
Memory switching
Analog switch applications

GENERAL DESCRIPTION

The ADG3248 is a 2.5 V or 3.3 V , high performance $2: 1$ multiplexer/demultiplexer. It is designed on a low voltage CMOS process, which provides low power dissipation yet gives high switching speed and very low on resistance. The low on resistance allows the input to be connected to the output without additional propagation delay or generating additional ground bounce noise.
Each switch of the ADG3248 conducts equally well in both directions when on. The ADG3248 exhibits break-before-make switching action, preventing momentary shorting when switching channels.

The ADG3248 is available in a tiny 6-lead SC70 package.

FUNCTIONAL BLOCK DIAGRAM

NOTES

1. SWITCHES SHOWN FOR A LOGIC O INPUT

Figure 1.

Table 1. ADG3248 Truth Table

IN Pin Logic Level	Function
Low (L)	$B=A 0$
High (H)	$B=A 1$

PRODUCT HIGHLIGHTS

1. 3.3 V or 2.5 V supply operation.
2. Extremely low propagation delay through switch.
3. 4.5Ω switches connect inputs to outputs.
4. Tiny SC70 package.

Rev. A

ADG3248

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
REVISION HISTORY
10/07-Rev. 0 to Rev. A
Updated Format Universal
Changes to Table 1 1
Changes to Table 3 , 4
Changes to Ordering Guide 12
Pin Configuration and Function Descriptions5
Typical Performance Characteristics 6
Terminology 9
Bus Switch Applications 10
Mixed Voltage Operation, Level Translation 10
Analog Switching 10
Multiplexing 11
Outline Dimensions 12
Ordering Guide 12

10/03-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. ${ }^{1}$
Table 2.

[^0]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
Vcc to GND	-0.5 V to +4.6 V
Digital Inputs to GND	-0.5 V to +4.6 V
DC Input Voltage	-0.5 V to +4.6 V
DC Output Current	25 mA per channel
Operating Temperature Range	
\quad Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$332^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
\quad Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
\quad IR Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$
Pb-Free Soldering	
\quad Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
\quad Time at Peak Temperature	20 sec to 40 sec

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Port A0, Input or Output.
2	GND	Ground Reference.
3	A1	Port A1, Input or Output.
4	B	Port B, Input or Output.
5	V $_{\text {cc }}$	Positive Power Supply Voltage.
6	IN	Channel Select.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. Input Voltage

Figure 4. On Resistance vs. Input Voltage

Figure 5. On Resistance vs. Input Voltage for Different Temperatures

Figure 6. On Resistance vs. Input Voltage for Different Temperatures

Figure 7. Pass Voltage vs. Vcc

Figure 8. Pass Voltage vs. Vcc

Figure 9. Output Low Characteristic

Figure 10. Output High Characteristic

Figure 11. Charge Injection vs. Input Voltage

Figure 12. Bandwidth vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Off Isolation vs. Frequency

Figure 15. Transition Time vs. Temperature

Figure 16. Jitter vs. Data Rate; PRBS 31

Figure 17. Eye Width vs. Data Rate; PRBS 31

Figure 18. Eye Pattern; 1.244 Gbps, $V_{c c}=3.3$ V, PRBS 31

Figure 19. Eye Pattern; 1 Gbps, $V_{C C}=2.5$ V, PRBS 31

TERMINOLOGY

\mathbf{V}_{CC}
Positive power supply voltage.

GND

Ground (0 V) reference.
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
I_{I}
Input leakage current at the control inputs.
Ioz
Off state leakage current. Ioz is the maximum leakage current at the switch pin in the off state.

Io
On state leakage current. Iol is the maximum leakage current at the switch pin in the on state.

V_{P}

Maximum pass voltage. V_{P} relates to the clamped output voltage of an NMOS device when the switch input voltage is equal to the supply voltage.
Ron
Ohmic resistance offered by a switch in the on state. Rov is measured at a given voltage by forcing a specified amount of current through the switch.
Δ Ron $^{\prime}$
On resistance match between any two channels, that is, Ron max - Ron min.
C_{x} Off
Off switch capacitance.

$\mathrm{Cx}_{\mathrm{x}} \mathrm{On}$

On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Control input capacitance. C_{IN} consists of IN.
Icc
Quiescent power supply current. ICC represents the leakage current between the V_{CC} and ground pins and is measured when all control inputs are at a logic high or logic low level and the switches are off.
$\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}$
Data propagation delay through the switch in the on state. Propagation delay is related to the RC time constant $\mathrm{R}_{\mathrm{ON}} \times \mathrm{C}_{\mathrm{L}}$, where C_{L} is the load capacitance.
$\mathbf{t}_{\text {Bвм }}$
On or off time measured between the 90% points of both switches when switching from one to another.
$\mathbf{t}_{\text {TRANS }}$
Time taken to switch from one channel to the other, measured from 50% of the in signal to 90% of the out signal.

Maximum Data Rate

Maximum rate at which data can be passed through the switch.
Channel Jitter
Peak-to-peak value of the sum of the deterministic and random jitter of the switch channel.

BUS SWITCH APPLICATIONS MIXED VOLTAGE OPERATION, LEVEL TRANSLATION

Bus switches can provide an ideal solution for interfacing between mixed voltage systems. The ADG3248 is suitable for applications in which voltage translation from 3.3 V technology to a lower voltage technology is needed. This device can translate from 2.5 V to 1.8 V or bidirectionally from 3.3 V directly to 2.5 V .
Figure 20 shows a block diagram of a typical application in which a user needs to interface between a 3.3 V ADC and a 2.5 V microprocessor. The microprocessor may not have 3.3 V tolerant inputs; therefore, placing the ADG3248 between the two devices allows the devices to communicate easily. The bus switch directly connects the two blocks, thus introducing minimal propagation delay, timing skew, or noise.

Figure 20. Level Translation Between a 3.3 V ADC and a 2.5 V Microprocessor

3.3 V to 2.5 V Translation

When $V_{C C}$ is 3.3 V and the input signal range is 0 V to V_{CC}, the maximum output signal is clamped to within a voltage threshold below the $V_{C C}$ supply.
In this case, the output is limited to 2.5 V , as shown in Figure 22. This device can be used for translation from 2.5 V to 3.3 V devices and also between two 3.3 V devices.

Figure 21. 3.3 V to 2.5 V Voltage Translation

Figure 22. 3.3 V to 2.5 V Voltage Translation

2.5 V to 1.8 V Translation

When V_{CC} is 2.5 V and the input signal range is 0 V to V_{CC}, the maximum output signal is, as before, clamped to within a voltage threshold below the V_{CC} supply. In this case, the output is limited to approximately 1.8 V , as shown in Figure 24.

Figure 23. 2.5 V to 1.8 V Voltage Translation

Figure 24. 2.5 V to 1.8 V Voltage Translation

ANALOG SWITCHING

Bus switches can be used in many analog switching applications, for example, video graphics. Bus switches can have lower on resistance, smaller on and off channel capacitance, and thus better frequency performance than their analog counterparts. The bus switch channel itself, consisting solely of an NMOS switch, limits the operating voltage (see Figure 3 for a typical plot) but, in many cases, this does not present an issue.

MULTIPLEXING

Many systems, such as docking stations and memory banks, have a large number of common bus signals. Common problems faced by designers of these systems include

- Large delays caused by capacitive loading of the bus
- Noise due to simultaneous switching of the address and data bus signals
Figure 25 shows an array of memory banks in which each address and data signal is loaded by the sum of the individual loads. If a bus switch is used as shown in Figure 26, the output load on the memory address and data bits is halved. The speed at which data from the selected bank can flow is much improved because the capacitance loading is halved and the switches introduce negligible propagation delay. Bus noise is also reduced.

Figure 25. All Memory Banks Are Permanently Connected to the Bus

Figure 26. ADG3248 Used to Reduce Both Access Time and Noise

ADG3248

OUTLINE DIMENSIONS

Figure 27. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG3248BKS-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SMA
ADG3248BKS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SMA
ADG3248BKS-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SMA
ADG3248BKSZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	S1W

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Temperature range is as follows for B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Typical values are at $25^{\circ} \mathrm{C}$, unless otherwise stated.
 ${ }^{3}$ Guaranteed by design, not subject to production test.
 ${ }^{4}$ The digital switch contributes no propagation delay other than the resistance-capacitance (RC) delay of the typical Ron of the switch and the load capacitance when driven by an ideal voltage source. Because the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
 ${ }^{5}$ Propagation delay matching between channels is calculated from the on-resistance matching and load capacitance of 50 pF .

